245 research outputs found

    D2D Data Offloading in Vehicular Environments with Optimal Delivery Time Selection

    Full text link
    Within the framework of a Device-to-Device (D2D) data offloading system for cellular networks, we propose a Content Delivery Management System (CDMS) in which the instant for transmitting a content to a requesting node, through a D2D communication, is selected to minimize the energy consumption required for transmission. The proposed system is particularly fit to highly dynamic scenarios, such as vehicular networks, where the network topology changes at a rate which is comparable with the order of magnitude of the delay tolerance. We present an analytical framework able to predict the system performance, in terms of energy consumption, using tools from the theory of point processes, validating it through simulations, and provide a thorough performance evaluation of the proposed CDMS, in terms of energy consumption and spectrum use. Our performance analysis compares the energy consumption and spectrum use obtained with the proposed scheme with the performance of two benchmark systems. The first one is a plain classic cellular scheme, the second is a D2D data offloading scheme (that we proposed in previous works) in which the D2D transmissions are performed as soon as there is a device with the required content within the maximum D2D transmission range..

    Power-management policies for mobile computing

    Get PDF
    Abbiamo studiato architetture di rete per il power-saving in ambito di wireless LAN infrastrutturate. Abbiamo proposto protocolli power-saving di livello middleware, indipendenti dalla tecnologia wireless impiegata. Tali protocolli sono stati valutati approfonditamente, risultando molto efficienti. Abbiamo poi valutato in maniera estensiva il meccanismo di power-saving dello standard 802.11. Ne abbiamo evidenziato i limiti, ed abbiamo definito un framework cross-layer di power-management. Tale framewok integra i protocolli middleware studiati inizialmente e lo standard 802.11. L'incremento delle prestazioni ottenute rispetto allo standard 802.11 arriva al 90% in termini di power saving

    SPoT: Representing the Social, Spatial, and Temporal Dimensions of Human Mobility with a Unifying Framework

    Get PDF
    Modeling human mobility is crucial in the analysis and simulation of opportunistic networks, where contacts are exploited as opportunities for peer-topeer message forwarding. The current approach with human mobility modeling has been based on continuously modifying models, trying to embed in them the mobility properties (e.g., visiting patterns to locations or specific distributions of inter-contact times) as they came up from trace analysis. As a consequence, with these models it is difficult, if not impossible, to modify the features of mobility or to control the exact shape of mobility metrics (e.g., modifying the distribution of inter-contact times). For these reasons, in this paper we propose a mobility framework rather than a mobility model, with the explicit goal of providing a exible and controllable tool for modeling mathematically and generating simulatively different possible features of human mobility. Our framework, named SPoT, is able to incorporate the three dimensions - spatial, social, and temporal - of human mobility. The way SPoT does it is by mapping the different social communities of the network into different locations, whose members visit with a configurable temporal pattern. In order to characterize the temporal patterns of user visits to locations and the relative positioning of locations based on their shared users, we analyze the traces of real user movements extracted from three location-based online social networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effectively approximates user visits to locations in the majority of cases and that locations that share many common users visiting them frequently tend to be located close to each other. In addition, we use these traces to test the exibility of the framework, and we show that SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, relying on the Bernoulli assumption for arrival processes, we provide a throughout mathematical analysis of the controllability of the framework, deriving the conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real traces) emerge

    Special Section on Autonomic and Opportunistic Communications

    Get PDF
    It is our great pleasure to introduce this Special Section of the Journal, focused on Autonomic and Opportunistic Communications. We strongly believe autonomic and opportunistic properties will be a key feature of the Future Mobile Internet. The huge proliferation of mobile devices with wireless networking capabilities makes it possible to foresee a Future Internet environment in which users\u27 mobile devices will spontaneously network together and build self-organizing wireless networks for enabling users interaction and content exchange. This will be a natural enabler for the take off of User Generated Content and other user-centred networking models in the area of pervasive mobile networks

    Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook

    Get PDF
    The widespread use of online social networks, such as Facebook and Twitter, is generating a growing amount of accessible data concerning social relationships. The aim of this work is twofold. First, we present a detailed analysis of a real Facebook data set aimed at characterising the properties of human social relationships in online environments. We find that certain properties of online social networks appear to be similar to those found ?offline? (i.e., on human social networks maintained without the use of social networking sites). Our experimental results indicate that on Facebook there is a limited number of social relationships an individual can actively maintain and this number is close to the well-known Dunbar?s number (150) found in offline social networks. Second, we also present a number of linear models that predict tie strength (the key figure to quantitatively represent the importance of social relationships) from a reduced set of observable Facebook variables. Specifically, we are able to predict with good accuracy (i.e., higher than 80%) the strength of social ties by exploiting only four variables describing different aspects of users interaction on Facebook. We find that the recency of contact between individuals ? used in other studies as the unique estimator of tie strength ? has the highest relevance in the prediction of tie strength. Nevertheless, using it in combination with other observable quantities, such as indices about the social similarity between people, can lead to more accurate prediction

    Usability of legacy p2p multicast in multihop ad hoc networks: an experimental study

    Get PDF
    There has recently been an increasing interest in convergence of p2p and ad hoc network research. Actually, p2p systems and multihop ad hoc networks share similar features, such as self-organisation, decentralisation, self-healing, and so forth. It is thus interesting to understand if p2p systems designed for the wired Internet are suitable also for ad hoc networks and, if they are not, in which direction they should be improved. In this paper, we report our experience in running p2p applications in real multihop ad hoc network testbeds. Specifically, we used group-communication applications that require p2p systems made up of an overlay network and a p2p multicast protocol. In this paper, we present experimental results specifically related to the performance of a well-known p2p shared-tree multicast protocol (Scribe). Our results show that such a solution is far from being efficient on ad hoc networks. We emphasize that the structured multicast approach is one of the main causes of inefficiency, and suggest that stateless solutions could be preferable

    Intercontact times in opportunistic networks and their impact on forwarding convergence

    Get PDF
    The increasing popularity of some new mobile technologies (smartphones for example) has opened new interesting scenarios in communications because of the possibility of a device to communicate with another one without using the wireless (or wired) network interfaces but taking advantages of the mobility of all the devices. In this direction, one of the most important evolution of Mobile ad hoc networks are opportunistic networks, that are self-organizing networks where there are not any guarantee of two devices to be linked with complete multi-hop path in any time. What a node has to do to deliver a certain message, is to nd a space-time multi-hop path, that is portions of path that can carry on the message during the time until it reaches the destination. We can see an example in Figure 1: the source S has to deliver a message to the destination D; the message can arrive at D at time t3, even if in [t1,t3] S and D are not directly linked. As nodes do not have any knowledges of the network topology, but only of the destination the massage have to arrive to, this way of delivering needs at any time to make some decisions, that are to whom has to be sent message and how many copies has to be sent

    Analysis of individual pair and aggregate inter-contact times in heterogeneous opportunistic networks

    Get PDF
    Foundational work in the area of opportunistic networks has shown that the distribution of inter-contact times between pairs of nodes has a key impact on the network properties, e.g. in terms of convergence of forwarding protocols. Specifically, forwarding protocols may yield infinite expected delay if the inter-contact time distributions present a particularly heavy tail. While these results hold for the distributions of inter-contact times between individual pairs, most of the literature uses the aggregate distribution, i.e. the distribution obtained by considering the samples from all pairs together, to characterise the properties of opportunistic networks. In this paper we analyse when this approach is correct and when it is not. We study, through an analytical model, the dependence between the individual pair and the aggregate distributions. We show that the aggregate distribution can be way different from the distributions of individual pair inter-contact times. Therefore, using the former to characterise properties that depend on the latter is not correct in general, although this is correct in some cases. We substantiate this finding by analysing the most representative distributions characterising real opportunistic networks that have been reported in the literature based on trace analysis. We study networks whose aggregate inter-contact time distribution presents a heavy tail with or without exponential cutoff. We show that a exponential cutoff in the aggregate appears when the average inter-contact times of individual pairs are finite. We also show that, when individual pairs follow Pareto distributions, the aggregate distribution consistently presents a heavy tail. However, heavy tail aggregate distributions can also emerge in networks where individual pair inter-contact times are not heavy tailed, e.g. exponential or Pareto with exponential cutoff distributions. This constitutes a reassuring result, as it means that forwarding protocols do not necessarily diverge in the quite common case of networks whose aggregate inter-contact time distribution is heavy tailed
    corecore